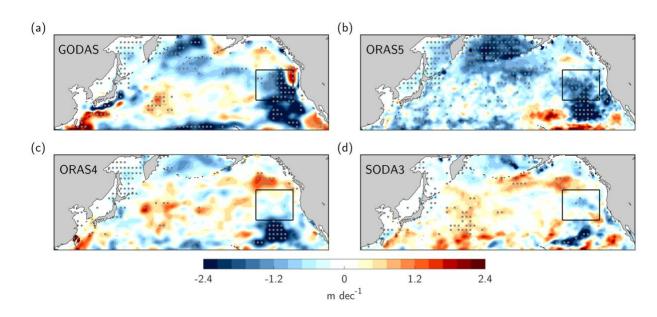
Supplementary Material for: Are long-term changes in mixed layer depth influencing North Pacific marine heatwaves? Dillon J. Amaya^{1,2}, Michael A. Alexander³, Antonietta Capotondi³, Clara Deser⁴, Kris Karnauskas^{1,2}, Arthur J. Miller⁵, and Nathan J. Mantua⁶ ¹Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder ²Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder ³NOAA Earth System Research Laboratory, Physical Sciences Division ⁴National Center for Atmospheric Research ⁵Scripps Institution of Oceanography, University of California San Diego ⁶NOAA Southwest Fisheries Science Center, Fisheries Ecology Division Corresponding author: Dillon J. Amaya, dillon.amaya@colorado.edu, 816-916-8348


Supplemental Table 1 CMIP5 models used in this study. Mixed layer depth was calculated using monthly means on the native model grid. Data were then interpolated to a common 1.0° x 1.0° grid before taking JJA average. For each model, the MLD trend for 1980-2015 and 2016-2099 are reported, with the latter in parenthesis. Significant trends are bolded and are based on a 95% Mann Kendall test. These models were chosen because they offered monthly mean ocean temperature and salinity profiles for both the historical and future warming periods.

CMIP5 Model	Institution	Native lat/lon resolution	NEPac MLD Trends (m dec ⁻¹)
			Trend for 1980-2015
			(2016-2099)
ACCESS1-0 ACCESS1-3	CSIRO and BOM, Australia	0.6° x 1.0°	-0.22 (-0.68) -0.07 (-0.95)
CESM1-BGC CESM1-CAM5	National Center for Atmospheric Research	0.5° x 1.125°	-0.41 (-0.13) -0.1 (-0.46)
CNRM-CM5	Centre National de Recherches Meteorologiques	0.6° x 1.0°	0.47 (-0.3)
GFDL-CM3 GFDL-ESM2M	Geophysical Fluid Dynamics Laboratory	0.9° x 1.0°	-0.56 (-0.62) -0.08 (-0.31)
GISS-E2-R	NASA Goddard Institute for Space Studies	2.0° x 2.5°	-0.43 (-0.41)
IPSL-CM5A-LR			-0.21 (-0.29)
IPSL-CM5A-MR	Institute Pierre-Simon Laplace	1.2° x 2.0°	-0.30 (-0.34)
IPSL-CM5B-LR			-0.12 (-0.26)
MPI-ESM-LR	Max Planck Institute for	0.8° x 1.4°	-0.17 (-0.52)
MPI-ESM-MR	Meteorology		-0.44 (-0.49)

33

34

Supplemental Figure 1 Individual JJA MLDA trend maps for the ocean reanalysis products
outlined in Table 1. Stippling represents 95% significance for a Mann-Kendall test.