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Supplementary Methods: 

Supplemental observational data 

 Monthly mean precipitation data was taken from the Global Precipitation Climatology 

Project (GPCP), which is available from 1979 to present on a 2.5˚x2.5˚ grid. GPCP integrates 

various satellite data sets over land and ocean, as well as precipitation gauge data over land. 

Anomalies using this data set are relative to a long-term monthly mean climatology for the period 

1982-2018. 

 Low-cloud fraction was calculated from Level 3 satellite-derived monthly means from the 

Moderate Resolution Imaging Spectroradiometer (MODIS), which is currently available on a 

1˚x1˚ grid from February 2000 to August 2019. MODIS anomalies are based on a long-term 

climatology for the period 2001-2018. 

 Net surface shortwave radiation (𝑄"#) data were taken from the National Aeronautic and 

Space Administration’s (NASA) Cloud and the Earth’s Radiant Energy System (CERES). 

Specifically, 𝑄"# results are based on the CERES Energy Balanced and Filled (EBAF) dataset1, 

which is available as monthly mean values from March 2000 to January 2019. CERES-EBAF 𝑄"# 

anomalies are based on a long-term climatology for the period 2001-2018.  

Additional AGCM experiments 

 Using GFDL-AM2.1, we conduct a fourth and fifth set of experiments in which we 

decompose the total tropical sea surface temperature (SST)-forcing into the tropical Indian and 

tropical Pacific Ocean component. For these runs, we use 150˚E as the separating point between 

the two experiments (dashed purple line, Fig. 4). Each ensemble consists of 20 ensemble members 

forced under the same initial conditions and greenhouse gas concentrations as the total tropical 



SST-only runs. Results for the tropical Pacific SST-only ensemble mean are shown in 

Supplementary Figure 4. Indian Ocean results showed no skill at reproducing observations. 

Decomposition of the net surface heat flux in Blob 2.0 region 

 It is useful to decompose the contribution of the net surface heat flux, 𝑄$%&, to the 

temperature tendency shown in Fig. 3a, such that: 

        𝑄$%& = 𝑄() + 𝑄") + 𝑄"# + 𝑄(#                            (1) 

where 𝑄$%& is the sum of the latent heat flux (𝑄()), the sensible heat flux (𝑄")), the net surface 

shortwave radiation (𝑄"#), and the net surface longwave radiation (𝑄(#). Given that the 

summertime mixed layer depth, ℎ, in the Blob 2.0 region is very thin relative to other seasons (Fig. 

3b), it is important to further assess the modulation of the SST time tendency by perturbations in 

the mixed layer depth itself2. For example, separating 𝑄$%& divided by ℎ into a mean component 

and perturbation component, Taylor expanding, and linearizing yields3: 
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where the primes denote time anomalies and overbars represent the monthly climatology. The term 

on the left-hand side (LHS) of Eq. (2) represents the full influence of a time-varying heat flux and 

a time-varying mixed layer depth on the temperature tendency (hereafter referred to as Full), the 

first term on the right-hand side (RHS) represents changes in the mixed layer temperature due to 

anomalies of the surface heat flux (hereafter referred to as Flux), while the second term represents 

changes in the mixed layer temperature due to anomalies of mixed layer thickness acting on the 

mean surface heat flux (hereafter referred to as MLD)4. The RHS and LHS are only approximately 

equal due to neglecting higher order and non-linear terms in the Taylor expansion. 

 



 We can use 𝑄() as an example to gain some physical intuition of what to expect from the 

Flux and MLD terms. In this case, the Flux term is related to SST anomalies that result from 𝑄() 

anomalies mixing over the mean mixed layer depth (e.g., reducing wind speeds generates 

downward 𝑄() anomalies and positive SST anomalies). In contrast, the MLD term is related to 

SST anomalies that result from mixed layer depth anomalies that then alter the depth over which 

mean surface heat fluxes are mixed. For example, 𝑄<()is always a cooling term in the Blob 2.0 

region (not shown). Therefore, seasons with anomalously thin mixed layers (i.e., large negative 

ℎ7) would allow 𝑄<() to be mixed over a smaller volume, producing negative SST anomalies. 

 Figure S2 shows Eq. (2) applied to each heat flux component outlined in Eq. (1). We use 

monthly mean NCEP Reanalysis 2 (NCEP2) data to estimate 𝑄$%&, 𝑄(), and 𝑄") (see main Methods 

for more details on this data). However, a careful comparison of 𝑄"# maps from NCEP2 with 

MODIS low-cloud fraction anomalies shows significant inconsistencies, and does not provide 

enough confidence to use NCEP2 for the surface radiative fluxes. There are no other reliable direct 

observations of 𝑄"# and 𝑄(# that are currently available for June-August (JJA) 2019 in our region 

of interest. Therefore, we instead utilize the linear relationship between CERES-EBAF surface 

𝑄"# and 𝑄(# anomalies and MODIS low-cloud fraction anomalies averaged during JJA from 2001-

2018 at each grid point in the Blob 2.0 region (Supplementary Figure 5). By multiplying the 

respective regression coefficients with the JJA MODIS low-cloud fraction anomaly averaged in 

the Blob 2.0 region each year, we can estimate the surface radiative fluxes. Finally, note that the 

MLD values of the 𝑄") are small because 𝑄<") (-0.18 W m-2) << ℎ< (26.23 m). 

Low-cloud radiative effect vs. wind speed-induced latent heat flux in Blob 2.0 region 

 As discussed in the main text, satellite-derived observations show a reduction in low-cloud 

fraction in the Blob 2.0 region (shading, Fig. 6), which would tend to correspond to an increase in 



surface downwelling solar radiation and, over a dark ocean, overall 𝑄"#. In order to estimate the 

radiative effect induced by these low-cloud anomalies, we again utilize the linear relationship 

between JJA averaged CERES-EBAF surface 𝑄"# and MODIS cloud data (Supplementary Figure 

5a). The regression coefficient between these two variables is –1.19 W m-2 %-1 based on a linear 

least-squares fit. Multiplying this coefficient by the JJA 2019 low-cloud fraction anomalies 

averaged in the Blob 2.0 region (–9.58%) provides an estimate of the low-cloud-induced increase 

in surface 𝑄"#, which equals 11.37 W m-2. 

 It is interesting to compare the magnitude of the low-cloud radiative effect with the wind 

speed-induced downward latent heat flux5,6 in the Blob 2.0 region. This allows us to assess the 

relative importance of these budget terms to the overall intensity of the Blob 2.0 SSTs. We 

calculate the wind speed-induced latent heat flux (𝑙ℎ?) as: 

       𝑙ℎ# = 𝑄<()
?9

?:
                          (3) 

Where 𝑄() the total latent heat flux and w is the scalar wind speed. Overbars denote the JJA 

climatology, and primes denote deviations from this mean. Using scalar wind speed data from 

NCEP Reanalysis 1 and latent heat flux data from NCEP Reanalysis 2, Eq. (3) estimates a wind 

speed-induced downward latent heat flux of 5.09 W m-2 during JJA 2019 in the Blob 2.0 region. 

This value compares well to the JJA 2019 total latent heat flux averaged in the Blob 2.0 region 

(5.43 W m-2). 
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Supplementary Figure 1 May and August surface temperature anomalies. Five-meter ocean 

temperature anomalies (˚C) in May (blue) and August (red) in Global Ocean Data Assimilation 

System (GODAS) area-weighted averaged in black box shown in Fig. 1a.  

  



 

Supplementary Figure 2 Surface heat flux budget term components. Terms from Eq. (1) 

contributing to the August minus May temperature change depicted in Fig. 3a Using Eq. (2), each 

flux term has been separated into contributions from a time-varying mixed layer depth (MLD; 

dashed), a time-varying heat flux (Flux; dotted), and the total time-varying heat flux over mixed 

layer depth term (Full; solid). Note each term has been multiplied by three months to convert units 

to degrees Celsius. 

  



 

Supplementary Figure 3 Precipitation anomalies during summer 2019.  Precipitation anomalies 

(shading; mm day-1) with underlying sea surface temperature anomalies (SSTAs; red/blue 

contours; ˚C) averaged for June-August 2019. Results shown for (a) Observations and the 

ensemble means of: (b) global SST-forced, (c) tropical SST-forced, and (d) North Pacific SST-

forced atmospheric model simulations. For (b)-(d), SSTAs only shown in forcing domain. Contour 

interval is 0.5˚C, with a maximum value of 2˚C. 



 

Supplementary Figure 4 Circulation anomalies for tropical Pacific-only simulation. Ensemble 

mean sea level pressure anomalies (SLPAs; hPa) for tropical Pacific-only atmospheric model 

simulation, averaged for June-August 2019.  



 

Supplementary Figure 5 Satellite-derived low-cloud fraction and radiation anomalies. Scatter of 

satellite-derived low-cloud fraction (%; x-axes) and surface net radiation anomalies (W m-2; y-

axes). (a) Low-cloud fraction anomalies versus net shortwave (SW) anomalies. (b) Low-cloud 

fraction anomalies versus net longwave radiation (LW) anomalies. Data based on June-August 

(JJA) average for the period 2001-2018 and are shown at each grid point and time step in the Blob 

2.0 region (Fig. 1a black box). Black line represents line of best fit based on linear least-squared 

regression. Red dot is JJA 2019 average. Its position along x-axis represents the low-cloud fraction 

anomaly averaged in the Blob 2.0 region. Its position along y-axis represents the SW and LW 

values estimated by multiplying the low-cloud fraction in the Blob 2.0 region by the respective 

regression coefficients. 


