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O C E A N O G R A P H Y

Global decline in ocean memory over the 21st century
Hui Shi1*, Fei-Fei Jin2*, Robert C. J. Wills3, Michael G. Jacox4,5, Dillon J. Amaya5, Bryan A. Black6, 
Ryan R. Rykaczewski7,8, Steven J. Bograd4, Marisol García-Reyes1, William J. Sydeman1

Ocean memory, the persistence of ocean conditions, is a major source of predictability in the climate system beyond 
weather time scales. We show that ocean memory, as measured by the year-to-year persistence of sea surface 
temperature anomalies, is projected to steadily decline in the coming decades over much of the globe. This global 
decline in ocean memory is predominantly driven by shoaling of the upper-ocean mixed layer depth in response to 
global surface warming, while thermodynamic and dynamic feedbacks can contribute substantially regionally. As the 
mixed layer depth shoals, stochastic forcing becomes more effective in driving sea surface temperature anomalies, 
increasing high-frequency noise at the expense of persistent signals. Reduced ocean memory results in shorter lead 
times of skillful persistence-based predictions of sea surface thermal conditions, which may present previously un-
known challenges for predicting climate extremes and managing marine biological resources under climate change.

INTRODUCTION
More than two-thirds of Earth’s surface is covered by ocean, with a 
mostly thin (~50 m) layer of relatively warm, near-surface water on 
top of colder deep water. Despite the relative shallow depth of this 
surface mixed layer, the large specific heat of water in comparison 
to the overlying atmosphere results in sea surface temperatures 
(SSTs) varying much more slowly than the fast fluctuations of air tem-
perature. The temporal persistence of anomalous ocean conditions—
known as ocean memory and often measured by autocorrelation—has 
been noted as an important source of predictability in the climate 
system (1–4).

The depth of the upper-ocean mixed layer (MLD) is a key con-
trol on the persistence of SST anomalies on seasonal to interannual 
time scales. Deeper mixed layers have greater heat content, which 
confers thermal inertia, a source of memory that lengthens auto-
correlation time scales of SST variability (2, 5, 6). The MLD is set by 
buoyancy contrasts between the surface water and the underlying 
deep water and is driven by mechanical stirring by the winds and 
buoyancy forcing at the surface (7, 8). Processes at the air-sea inter-
face and in the ocean act to dissipate or reinforce SST anomalies so 
as to modify their persistence, and they can be roughly categorized 
into two groups: (i) thermodynamic feedbacks (9–12) or recurring/
persistent atmospheric circulation anomalies (13–15), which act 
through surface heat fluxes, and (ii) ocean dynamical processes, such 
as horizontal heat advection by ocean currents (16–18), entrainment 
or vertical mixing of waters at the base of the mixed layer, and re-
emergence due to seasonal variations of the MLD (1, 19–21).

Observations and model projections for future scenarios show a 
reduction in the climatological MLD from continued greenhouse 
warming (22–26), mainly due to increasing upper-ocean stability 
(27). Here, using a comprehensive suite of Earth system models 

from the Coupled Model Intercomparison Project phase 6 (CMIP6) 
(28), we examine the hypothesis that this shoaling of the MLD may 
reduce upper-ocean memory in the coming decades, making annual 
mean SST less predictable. On the basis of a simple stochastic model 
of SST variability (2, 29), we develop a mathematical expression that 
attributes the ocean memory decline primarily to changes in MLD, 
with secondary contributions from changes in air-sea feedbacks, 
mixing, and dynamical processes. Comparing the ocean memory 
decline with changes in SST variance, we further infer changes in the 
intensity of noise (i.e., random excitation of SST fluctuations) in the 
future climate system. Last, we discuss the implication of these find-
ings for climate and ecosystem prediction.

RESULTS
Future change in year-to-year ocean memory
The 1-year autocorrelation of annual mean SST anomalies [hereafter 
referred to as A(1)] is used as a simple metric of the year-to-year 
ocean memory (Materials and Methods). The SST anomalies are 
defined as deviation from the long-term trends (Materials and 
Methods). The climatological A(1) is generally large and positive 
(up to 0.6 in CMIP6 models), except in the equatorial Eastern Pacific 
and parts of the Indo-Pacific warm pool. A(1) can even be negative 
in regions where the quasi-periodic climate modes such as the 
El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole 
(IOD) dominate (Fig. 1A).

By the end of the 21st century, CMIP6 climate models project 
that A(1) will decrease throughout most of the world’s oceans under 
the Shared Socioeconomic Pathway SSP5-8.5 scenario, with some 
regions experiencing ocean memory reductions of up to 100% (Fig. 1B), 
as measured by A(1). Large areas of the North Pacific Ocean show a 
robust decrease in A(1), especially in the northeast, where the A(1) is 
reduced by about 50% on average. The western equatorial Atlantic 
Ocean, the North Atlantic Ocean off the U.S. east coast, the Caribbean 
Sea, and the mid-latitude South Atlantic Ocean also show reductions 
of A(1) of similar magnitude. An especially pronounced and broad-
scale reduction in A(1) is projected to occur in the region spanning 
the Indian Ocean, South China Sea, and waters near the Maritime 
Continent (Fig. 1B).

These changes in A(1) are broadly reproduced within the Com-
munity Earth System Model Large Ensemble (CESM1-LE; Fig. 1E) 
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(30), where 40 ensemble members with different realizations of 
internal variability allow for a better separation of the anthropo-
genically forced climate response and internal variability. In the 
CESM1-LE, a reduction in A(1) is found throughout the Pacific 
Ocean and South Atlantic Ocean, but the overall decrease is weaker 
than in the CMIP6 multimodel mean (Fig. 1E; cf. Fig. 1B). The 
CESM1-LE also shows isolated regions of increased A(1) in the 
North Atlantic and eastern Indian Ocean. The differences between 
CESM1-LE and the CMIP6 ensemble are particularly large in the 
Indian Ocean. These differences suggest that the amplitude and 
regional features of the memory change are model dependent. 
Despite some differences, both CMIP6 models and the CESM1-LE 
highlight common regions where, by the end of the 21st century, 
annual mean SST in 1 year will no longer be a significant predictor 
of annual mean SST in the following year. The size of the area with 
significant A(1) shrinks in the Pacific Ocean in particular. There is 
also a reduction in the area of significant A(1) in high latitudes of 
the North Atlantic (Fig. 1, A, B, D, and E).

A major decline in the global ocean memory is projected in three 
different future pathways in the CMIP6 simulations and in the 
CESM1-LE (Fig. 1, C and F). The trends of global mean A(1) (50°N 
to 50°S) from 2000 to 2100 range from −0.10 (P < 0.05, SSP3-7.0) 
to −0.13 (P < 0.05, SSP5-8.5) per century. Under continued green-
house gas forcing, A(1) evolves similarly through the middle of the 
21st century in all scenarios, after which A(1) begins to stabilize in 
SSP3-7.0. The global ocean memory decline qualitatively agrees with 
the shoaling trend of global mean MLD in model projections (fig. 
S1C), although there are some differences in the dominant regions 
of MLD shoaling and reduced A(1) (fig. S1B). It is worth noting that 
the observed ocean memory appears to be larger and more sig-
nificant than those in the models (Fig. 1C and fig. S2), especially 
before around 1950. This may be partially due to the inadequacy in 
capturing relatively small-scale SST variance as a result of sampling 
in SST reconstruction.

While future anthropogenically forced changes in global ocean 
A(1) are apparent, there also exists a large degree of internal variability 
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Fig. 1. Declining year-to-year ocean memory through the 21st century. (A) Climatological 1-year autocorrelation, A(1), of annual SST anomalies at the end of the 
19th century (1870–1899). The magenta lines bound regions of statistically significant A(1) (correlation = 0.3, degree of freedom = 28). (B) Change in A(1) from 1870–1899 
to 2071–2100 under SSP5-8.5 scenario. Values are averaged over individual realizations from 20 different climate models from the CMIP6 multimodel ensemble (MME). 
The magenta lines bound regions of statistically significant A(1) in 2071–2100. Changes outside the gray dotted area are robust (Materials and Methods). White regions 
over ocean have seasonal or permanent sea-ice cover (Materials and Methods). (C) Global mean A(1) in 30-year rolling windows from observations and CMIP6 simulations 
from the historical and future (SSP) scenarios. Gray shadings show the range of values across models in percentiles: 25 to 75% (dark) and 5 to 95% (light). The dashed line 
is the A(1) averaged over the preindustrial control runs from the CMIP6 MME, with an error bar (cadet blue) showing the uncertainty in the MME (MME UNC.) (Materials 
and Methods). Error bars are also shown to quantify the cross-model spread (purple) and internal variability (salmon) (Materials and Methods). (D to F) Same as (A) to (C) 
but calculated with the 40-member Community Earth System Model Large Ensemble (CESM1-LE). (D) The climatological A(1) for 1920–1949 period and (E) change in 
A(1) between 1920–1949 and 2071–2100 in Representative Concentration Pathway (RCP) 8.5 scenario. In (F), the colored dashed line is the global mean A(1) with the 
fourth-order polynomial detrending, as used for the MME (Materials and Methods). Error bars show uncertainty in the ensemble mean (LE UNC.) and the spread due to 
internal variability (IV).
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(Fig. 1, C and F, error bars and shading). However, as greenhouse 
gas concentrations continue to increase, the forced signal will be-
come increasingly evident relative to this spread. Under the current 
trends, there would very likely be a historically unprecedented 
reduction in global ocean memory by the end of the 21st century.

Processes contributing to ocean memory decline
We explore the mechanisms contributing to ocean memory decline 
using a simple stochastic model of SST variability (2), defining the 
damping rate (r) as an alternative way to represent A(1), where 
r = − ln A(1), and increases in damping rate correspond to decreases 
in ocean memory. This applies to all ocean regions where the SST 
variability is dominated by the red noise process. In some regions, 
other processes also affect the SST autocorrelation (e.g., in situ or 
remotely forced oscillatory variability), leading to very small or even 
negative A(1). In these cases, the damping rate is set to a constant 
corresponding to a threshold value of A(1) (Materials and Methods). 
We then use a mixed layer heat budget (Materials and Methods) to 
decompose damping rate changes (R) into contributions from three 
terms: (i) MLD changes (H), (ii) changes in the SST–surface–heat 
flux feedback (Q), and (iii) changes in ocean mixing and dynam-
ics (M + D).

Positive R is projected (i.e., reduced ocean memory) in most parts 
of the world’s oceans in CMIP6 future warming scenarios (Fig. 2A). 
In the tropical belt, R is less pronounced or negative compared with 

projected changes in the A(1) (Fig. 1B). This is because the A(1) 
changes in these regions involve both changes in the damping rate 
and the periodicity of tropical oscillatory modes. In these cases, the 
actual change in memory is more accurately represented by R (Fig. 2A). 
Admittedly, our crude determination of the damping rate in equa-
torial regions is subject to some errors (Materials and Methods), but 
these issues should not influence the extratropics, where A(1) is 
generally large. Averaged over the globe, ocean memory loss is quan-
tified with an increase in the damping rate by 0.39 year−1 between 
1870–1899 and 2071–2100. Stronger memory loss is found in the 
mid-latitudes (0.44 year−1), relative to the tropics (0.25 year−1; Fig. 2E).

The contribution of MLD changes (H) to R is predominantly 
positive (Fig. 2B) and best explains the increased damping rate over 
most of the global oceans (Fig. 2A). The substantial loss of upper- 
ocean thermodynamic memory is thus primarily driven by surface 
warming–induced shoaling of global MLDs, which reduces the ef-
fective heat capacity of the ocean surface layer. The reduced MLD 
and ocean memory are projected for both the winter and summer 
seasons (figs. S3 and S4), further confirming shoaling of MLD under 
year-round warming as the common mechanism, regardless of the 
seasonal variations of the MLD. Changes in SST–surface–heat flux 
feedback (Q) lead to large damping rate changes in the tropical 
oceans, most evidently in the equatorial eastern Pacific, Atlantic Niño, 
and IOD regions (Fig. 2C). In these regions, the ENSO, Atlantic Niño, 
and IOD are active, and the contributions from Q and M + D largely 
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Fig. 2. Causes of ocean memory decline. Changes from 1870–1899 to 2071–2100 in (A) damping rate (R, year−1); (B) MLD term (H); (C) SST–surface–heat flux feedback 
term (Q); (D) mixing and dynamic term (M + D); and (E) contribution of each term to R over the global oceans (50°N to 50°S), the tropics (10°N to 10°S), and mid-latitudes 
(10° to 50°N and S). R, H, Q, and M + D all represent changes. Heat fluxes, MLD, and SST data are from CMIP6 historical simulations and future projections under the 
SSP5-8.5 scenario.
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offset (Fig. 2, C and D). This cancellation between dynamics and 
thermodynamics is likely due to mean state changes that are known 
to generate similar cancellations in the ENSO growth rate simulated 
by climate models (31). Changes in ocean mixing and dynamics 
(M + D) contribute mostly in regions where active convection exists, 
e.g., in the Greenland-Iceland-Norwegian Seas, or in regions of 
strong upwelling, e.g., along the equator (Fig. 2D). The partial can-
cellation of H and M + D terms (Fig. 2, B and D) in the high-latitude 
North Atlantic likely indicates that a reduction in ocean heat trans-
port convergence and vertical mixing contribute to the locally en-
hanced MLD shoaling in this region.

In the global mean, H is the main contributor to the increase in 
R (70%), followed by Q (21%), and M + D (9%). In the tropics, Q 
also contributes to the increase in R and is largely offset by the de-
crease in M + D. In the mid-latitudes, both H and M + D contribute 
to the R increase, and the contribution from Q is minimal. There-
fore, on the global scale, future ocean memory decline is predomi-
nantly driven by future shoaling in mixed layer thermal inertia (i.e., 
the MLD), with the other feedbacks playing a relatively minor role. 
On the regional scale, however, both the SST–surface–heat flux 
feedback and ocean mixing and dynamics can contribute substan-
tially to the memory decline together with the MLD changes.

Consequences for SST variability
Year-to-year SST variations consist of two components: (i) slow 
variations due to ocean memory/persistence or remote forcing, 
which are reflected in a large autocorrelation and level of predict-
ability, and (ii) noise, which are the random fluctuations associated 
with stochastic forcing and are largely unpredictable. To separate 
these components of SST variance, we use the Frankignoul and 
Hasselmann (2) model to compute an expression for the fractional 
change in annual SST variance (   SST  2   ) expressed as the difference 
between the fractional change of noise variance (   N  2   ) and that of the 
damping rate (r; Materials and Methods). While the persistent/
predictable part of the overall SST variance decreases in the future 
(−21%), the increase in the noise/unpredictable part of the SST vari-
ance is larger (24%; Fig. 3B). As a result, the overall SST variance 
shows a slight increase (3%) in the future (Fig. 3, A and B).

Further decomposing    N  2    into a component that is driven by sto-
chastic heat flux forcing (e.g., atmospheric turbulent heat fluxes) (   F  2   , 
Materials and Methods) shows that the amplitude/variance of the 
stochastic forcing itself will decrease slightly (−1%) in the future 

(Fig. 3B). This suggests that the SSTs will become more sensitive to 
stochastic heat flux forcing (i.e., stochastic forcing becomes more 
effective at driving SST changes), such that    N  2    increases without an 
increase in the actual forcing.

Just as the shoaling of the MLD is the main reason for the decline 
in ocean memory, it is also the reason for the increase in noise variance 
(Materials and Methods). The reduced MLD (−25%; Fig. 3B) in-
creases the effectiveness of stochastic forcing (i.e., heat fluxes at the 
ocean surface or mixed layer bottom) at generating SST anomalies, 
even when the amplitude of the forcing itself (i.e., the magnitude of 
heat flux anomalies) decreases. For example, although some studies 
have reported that the variance of the atmospheric winds become 
smaller under warming (32), they would more effectively lead to 
changes in SSTs because they are driving a shallower ocean mixed 
layer. The net result is a slight increase in year-to-year SST variability, 
and a reduced “signal-to-noise” ratio as the fraction of persistent/
predictable SST variance is reduced in a warmer climate.

Consequences for persistence-based predictions
To estimate the impacts of memory decline on ocean predictions, 
we examined the changes in the damping time scale (Fig. 4), i.e., the 
inverse of the damping rate, which is an estimation of lead time for 
SST persistence predictions. For example, a damping time scale of 
10 months would be equivalent to a lead time of 6.9 months for a 
persistence forecast correlation skill of 0.5. The climatological damp-
ing time scale ranges from 2 to 28 months (Fig. 4A). By the end of 
the 21st century following the SSP5-8.5 scenario, CMIP6 climate 
models project decreases in damping time scale over most of the 
world’s oceans (Fig. 4B). For the northeast Pacific Ocean and the 
western Atlantic Ocean, damping time scale is reduced by 6 to 
8 months from originally 12 to 24 months. Globally, the damping 
time scale is reduced from an average of 9.7 to 7.7 months (Fig. 4C). 
This translates to a lead time change from 6.7 to 5.3 months for 
forecast skill of 0.5, meaning that the previously 2-quarter-lead 
forecast would drop to quarter-lead forecasts. The damping time 
scale reduction is slightly stronger for the mid-latitudes, which is 
2.2 months from 10 to 7.9 months.

DISCUSSION
This study described a projected steady decline of ocean memory 
over much of the global oceans throughout the 21st century. To 

A B

Fig. 3. Changes in SST variance and signal-to-noise. (A) Fractional changes in SST variance from 2071–2100 to 1870–1899, with reference to the long-term mean variances 
of the entire period (1870–2100). Changes outside the gray dotted area are robust (Materials and Methods). (B) Global mean (50°N to 50°S) fractional changes in SST 
variance (   SST  2    ), damping rate (reversed, −r), noise variance (   N  2   ), variance of stochastic surface heat flux forcing (   F  2  ), and mix layer depth squared (h2). MLD and SST 
data are from CMIP6 historical simulations and future projections under the SSP5-8.5 scenario.
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explain the global decline in ocean memory and its consequences 
for SST variability, we provided an estimation of global changes in 
the SST damping rate, attribution of damping rate changes to the 
contributions from changes in MLD and thermal-dynamical feed-
backs, and decomposition of the noise component of the SST vari-
ance. We found that globally the MLD shoaling contributes about 
two-thirds of the overall ocean memory decline. In the mid-latitudes, 
besides the shoaling of MLD, ocean mixing and dynamical processes 
also contribute substantially (about half) to the memory decline. In 
the tropics, all three processes substantially contribute to memory 
change, and the thermal and dynamical processes largely cancel 
each other. Estimates of the contributions of different processes are 
based on an idealized theoretical framework and use relatively limited 
data lengths with annual sampling, thus there remains some degree 
of uncertainty in these numbers, especially in regions where oscilla-
tory climate modes or nonlocal dynamics (i.e., remotely forced SST 
changes) dominate. While there is a clear dominance of MLD changes 
over much of the globe, interesting questions about the other con-
tributing processes remain to be explored, e.g., the reasons for op-
posite changes in SST–surface–heat flux feedbacks and SST variance 
in the Atlantic Niño region versus in the El Niño and IOD regions 
(Figs. 2C and 3A). Positive SST-low cloud feedbacks may decrease 
with warming in the major upwelling regions (33). However, this is 
only evident in the Peru Current region as an increase in Q (Fig. 2C). 

In the mid-latitude Pacific Ocean and South Atlantic Ocean, increases 
in M + D contribute notably to the increases in R (Fig. 2D), leading 
to slightly decreased SST variance in these regions (Fig. 3A). In-
depth, regional-scale studies are needed to understand what specific 
dynamical processes are involved and how they will change under 
warming. This may also help to reconcile the reduction in year-to-
year ocean memory reported in our study with the previously 
reported increase in week-to-week ocean memory (34).

The physical implications of ocean memory decline can be well 
understood through changes in the ocean damping time scale, which 
is directly associated with lead time for SST persistence predictions. 
Over many of the world’s large marine ecosystems (LMEs), SST 
anomalies are predictable at lead times of months to more than a 
year (35), enabling ecologically and societally relevant forecasts at 
seasonal-to-interannual time scales (36). Of particular interest is 
the accurate prediction of warm ocean extremes—known as marine 
heatwaves (MHWs)—which can markedly affect the distribution 
and productivity of marine species and the overall health of marine 
ecosystems (37–43). In most LMEs, the dominant source of SST 
predictability is persistence—or ocean memory—and differences in 
SST forecast skill between regions often reflect differences in per-
sistence (35, 44). Thus, the projected decline in ocean memory is 
likely to hinder ocean prediction efforts by reducing the lead times 
at which SST forecasts, including those for MHWs, are skillful. 
Future warming-induced MLD shoaling may also alter the statistics 
of temperature extremes, as the reduced thermal inertia of the mixed 
layer enables more rapid and pronounced temperature changes (23), 
which combined with reduced lead time for persistence-based pre-
dictions of ocean surface conditions will pose challenges for ecosystem 
management and marine hazard preparation.

In the terrestrial realm, seasonal-to-decadal predictions of tem-
perature and rainfall usually draw substantial skill from SSTs (45–48). 
The persistence of SSTs is known to be a crucial factor for skillfully 
predicting monsoon variability (49–52) and terrestrial extremes, e.g., 
extreme summer precipitation (53), winter cold days (54, 55), and heat-
waves (56). Therefore, reduced SST persistence under warming likely 
renders previously identified predictability sources ineffective and re-
quires searching for different sets of predictors. The previously unknown 
challenges in forecasting brought by ocean memory loss are crucial to 
address as we prepare for potentially more frequent and intense tem-
perature and hydrological extremes in a warming world (57, 58).

From an applied perspective, fisheries management relies on 
estimates of biological parameters to estimate stock size and set 
sustainable harvest rates. The demographic of fish, such as recruit-
ment, is well known to be dependent on environmental conditions, 
including SST (59, 60), although in most stock assessments they are 
assumed to be stable such that a “moving window” of estimates in 
the recent past is considered reflective of current environmental 
conditions (61). Less memory in ocean temperature may complicate 
that approach to management, potentially decreasing the accuracy 
of parameters used in stock assessments and management. In that 
case, there would be an increased need for alternative approaches in 
ecosystem-based fisheries management that aim to include near–
real-time ocean monitoring and detailed understanding of environ-
mental effects on fish population parameters.

The biological implications of changes in ocean memory are more 
uncertain, but consequential impacts on populations are likely. Some 
species with relatively constant reproductive effort, species with so-
called K-selected life histories (62, 63), are best suited for persistent 

Global
Tropics
Mid-lat
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B

C

Fig. 4. Projected declining ocean damping time scale. (A) Climatological damping 
time scale (TAO, months) at the end of the 19th century (1870–1899). (B) Projected 
change in damping time scale from 1870–1899 to 2071–2100 under SSP5-8.5 
scenario. Changes outside the gray dotted area are robust (Materials and Methods). 
(C) Global and regional mean damping time scale in 30-year rolling windows under 
SSP5-8.5 scenarios. Shadings show 1 SD across models.
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environmental conditions and may flourish during periods of low 
variability. In contrast, the so-called r-selected species may “hedge 
their bets” and demonstrate multiple major reproductive efforts 
during years of rarely occurring optimal conditions (64). This fun-
damental dichotomy in species’ life history attributes may be useful 
for understanding and predicting which populations may be nega-
tively or positively affected by future changes in ocean memory.

MATERIALS AND METHODS
Data
We use earth system model output from the CMIP6 (28) and the 
CESM1-LE (30). We use CMIP6 output of SST, MLD, surface latent 
heat flux, surface sensible heat flux, and surface radiative fluxes 
from the preindustrial control simulations, historical simulations, 
and various SSP (65) scenarios, including SSP2-4.5, SSP3-7.0, and 
SSP5-8.5. We selected a total of 20 CMIP6 models (table S1) that 
have all targeted variables across all experiments. We also use SST 
data from 40 ensemble members of the CESM1-LE historical and 
RCP (Representative Concentration Pathway) (66) 8.5 simulations.

The observational data we used include the monthly SST data 
from Met Office Hadley Center’s sea ice and sea-surface tempera-
ture dataset (HadISST) from 1870 to 2019, with 1° resolution (67). 
Historical SST observations (1982–2019) from the National Oceanic 
and Atmospheric Admistration Optimum Interpolation SST, version 2 
(OISSTv2) (68, 69) were also used to identify seasonal and perma-
nent sea ice cover. Regions where OISSTv2 ice concentrations 
were greater than zero for more than 15 days in any month were 
masked out in all analyses to excluding memory changes due to 
changes in sea ice properties. All data were interpolated onto a 5° 
grid for analysis.

Year-to-year ocean memory
The lag-1 autocorrelations A(1) of annual (January to December) 
SST anomalies were used to represent year-to-year ocean memory. 
The A(1) metric is applicable for most parts of the world oceans. In 
the equatorial regions, where interannual oscillatory modes tend to 
dominate the SST variability, the simple persistence metric A(1) 
does not capture predictability associated with the periodicity of 
these modes. Therefore, we made modifications when calculating 
the damping rate in these regions (next section).

To remove the long-term forced response in the CMIP6 data, we 
removed a fourth-order polynomial trend from SST data in both 
model simulations (1870 to 2100) and observational data (1870 to 
2014) as in Hawkins and Sutton (70) [see also (71)]. We then calculate 
the climatological A(1) at the end of the 19th century (1870–1899) 
and the epoch difference of A(1) between 1870–1899 and 2071–2100. 
Area-weighted A(1) in a 30-year rolling window is calculated over 
the global oceans to demonstrate the time variations of observed 
and simulated A(1). We look at changes in the multimodel-ensemble 
mean (MME) and use piControl simulations, i.e., long simulations 
with greenhouse gas forcing fixed at preindustrial levels, to quantify 
uncertainties due to sampling of internal variability. We calculate 
the A(1) in a total of eight nonoverlapping 30-year periods from the 
piControl simulations and calculate the multimodel mean uncer-
tainty as the SD of the multimodel means across these eight pre-
industrial control periods. When the MME change between 
the future and historical exceeds 1 SD of the multimodel mean, the 
change is considered robust. We also calculate the SD across the 

20 models (in each of the eight periods) to quantify the cross-model 
spread. The SD across the eight periods (in each of the 20 models) 
represents the spread in multimodel-mean A(1) due to internal 
variability.

For the CESM-LE, the forced response is estimated by the 
ensemble-mean SST and is removed from the individual ensemble 
members. We also calculate the forced response using the fourth-order 
polynomial used for the CMIP6 data and find consistent results 
(Fig. 1F). There is no cross-model spread for the LE. The internal 
variability is represented by the SD across the 40 members, and the 
uncertainty in the ensemble mean is the square root of the total 
variance due to internal variability divided by 40 (the number of 
ensemble members).

Attribution of ocean memory change
According to the stochastic climate model (2, 29), SST anomalies 
evolve according to a red noise process

    d T ′   ─ dt   = − r T ′   + N   (1)

Here, T′ is the SST anomaly, r is the damping rate, and N represents 
white noise process (in units of °C s−1). The damping time scale 
(r−1) quantifies the ocean memory. The damping rate can be related 
to A(1), where r takes the unit of year−1

  r = − ln A(1)    

In regions where A(1) is negative or very close to zero [A(1) < 0.05], 
we estimate r as follows

  r = {  − ln (0.05 ) , for 10° − 50° N and S     
− ln (max(∣A(1 ) ∣, 0.05 ) ) , for 10° S − 10° N

   

In the mid-latitudes, we assume the red noise process dominates, 
and we use a threshold A(1) to avoid obtaining unrealistically large 
r. For the tropics, where the oscillatory process is important, we es-
timate the envelope of the SST autocorrelations by using the larger 
absolute value of A(1) and the threshold A(1) to calculate r. We 
chose the threshold of A(1) = 0.05 because it is the critical correla-
tion at the 5% significance level for degree of freedom = 30 − 2, and 
it satisfies the sampling frequency requirement [A(1) > > 0.01; next 
section]. Using threshold A(1) may cause underestimation of r in 
the mid-latitudes, especially for the end of the 21st century, when 
31% of data points in the mid-latitudes have A(1) smaller than 0.05. 
However, the percentage only decreased slightly to 28% when re-
ducing the threshold A(1) to 0.03, indicating that reducing the 
threshold A(1) will not substantially enlarge regions included in 
mid-latitude calculations. To fully separate the red noise and the 
oscillatory processes, more sophisticated methods are required, 
which is beyond the scope of this paper. Overall, our approach is a 
simple way to account for the oscillatory nature of tropical coupled 
modes, and it provides a reasonable estimation of the ocean memory 
in the tropical region; it also yields a smoother long-term mean 
damping rate (   _ r   ) globally by avoiding adding noise from regions 
with low A(1).

To quantify the different processes that contribute to changes in 
the damping time scale and A(1), we examine the heat budget of the 
ocean mixed layer
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    d T ′   ─ dt   =    Q ′   −  ( W  E  (T −  T  b   ) ) ′    ────────────  C  P   h   +  D ′   + Rsd   

Here, Q′ is the surface heat flux anomaly, (WE(T − Tb))′ is the 
turbulent entrainment flux anomalies (or mixing), where WE is 
the entrainment velocity, T and Tb are the temperature in and at the 
bottom of the mixed layer, respectively. D′ + Rsd are ocean dynamics 
and subgrid-scale residuals, and h is the climatological MLD. Con-
stants  and CP are the density and heat capacity of seawater, respec-
tively. We parameterize the surface heat fluxes Q′ and the ocean 
dynamic terms of this equation in terms of temperature-dependent 
feedbacks Q and M + D and noise NQ and NM + D whereby we obtain

     Q ′   ─  C  P   h   = −   
   Q  

 ─ h   T ′   +  N  Q    (2)

and

  −    ( W  E  (T −  T  b   ) ) ′    ─  C  P   h   +  D ′   + Rsd = −      M+D   ─ h   T ′   +  N  M+D    (3)

Here, we assume that ocean dynamics and subscale effects can be 
represented by a combined mixing flux anomaly. Summing Eqs. 2 
and 3 and comparing with Eq. 1, r can be expressed in terms of a 
temperature-dependent feedback parameter 

  r =  / h. , where   =    Q   +    M+D    

A significant change in A(1) implies a significant change in r. 
Thus, we express r in two parts after linearization, i.e., the long-term 
mean (   _ r   ) and the change/trend (∆r)

  r =   _ r   + ∆ r   

The change in r can be further decomposed into components due 
to changes in MLD (∆h), changes in the SST–surface–heat flux feed-
back (∆Q), and changes in ocean dynamics and mixing (∆M + D)

  ∆ r = −   _ r     ∆ h ─ 
  
_

 h  
   +   

∆    Q  
 ─ 

  
_

 h  
   +   ∆    M+D   ─ 

  
_

 h  
    

           {R}    {H}    {Q}    {M + D}  

The first term (H) is diagnosed by calculating the relative change 
(  ∆h _ 

  
_

 h  
   ) in MLD between 1870–1899 and 2071–2100 periods in reference 

to the long-term mean MLD. The long-term mean damping rate (   _ r   ) 
was obtained by averaging the calculated damping rate in 30-year 
windows across the 1870–2100 period. The second term (Q) is diag-
nosed by calculating the changes in surface heat flux feedbacks (∆Q) 
between 1870–1899 and 2071–2100 periods through linear regression 
based on Eq. 2 and weighting the change by the long-term mean 
MLD. The third term (M + D) is diagnosed as a residual. All diag-
nostics are done grid by grid over the world oceans.

Here, our estimation of the SST–surface–heat flux feedback is 
based on the assumption that surface heat fluxes depend on the 
local SST, an assumption that is embedded in the Frankignoul- 
Hasselmann model. Surface heat flux changes due to nonlocal cloud 
and circulation changes (e.g., teleconnections from ENSO) will not 
be captured by this term (they will be captured by the M + D term 

instead). While these dynamic effects may alter the picture on the 
regional scale, the estimations of contributions to ocean memory 
loss on the global or hemispheric scale will be robust.

Change in variance of noise and stochastic forcing
SST varies on a continuum of time scales. Changes in ocean memory 
influence SST variability differently on different time scales. 
From the stochastic climate model (2, 29), we can take a Fourier 
transform of Eq. 1 to obtain the temperature variance as a function 
of frequency

    T  2  (f ) =   
  N  2  

 ─ 
 r   2 

     1 ─ 
1 + 4     2   r   −2   f   2 

    

Integrating over frequencies between 0 and the Nyquist frequency 
fN leads to a relationship between the variance of annual mean SST 
anomalies (   T  2   ) and the variance of the noise (   N  2   )

    T  2   =   
  N  2  

 ─ 2r    tan   −1 (2  r   −1   f  N   )   

In the high-frequency sampling limit (r ≪ 2fN)

    T  2   =   
  N  2  

 ─ 4r      

For the annual anomalies studied here (i.e., fN = 0.5 year−1), this 
is approximately true for r ≪ 4.9 [note that r = 4.9 corresponds to 
A(1) = 0.007]. We can then infer the fractional changes in    N  2    as

    
∆   N  2  

 ─ 
 ‾   N  2   

   =   
∆   T  2  

 ─ 
 
_

   T  2   
   +   ∆ r ─   _ r      

where   ‾   N  2    ,   
_

   T  2    , and    _ r    are the climatological means, and  ∆   N  2   ,  ∆   T  2   , 
and ∆r are changes.

The noise N (in units of °C year−1) can be understood as result-
ing from stochastic forcing (heat flux from the surface and the bottom 
of the mixed layer) F of an ocean mixed layer with effective heat 
capacity C = CPh, where N and F have the relationship  N =   F _ C  .  
Therefore, the variance of the stochastic heat flux forcing    F  2    can be 
expressed as

    F  2   =  C   2    N  2    

Fractional changes in    F  2    can therefore be expressed as

    
∆   F  2  

 ─ 
 
_

   F  2   
   =   

∆   N  2  
 ─ 

 ‾   N  2   
   +    h   2  ─ 

 
_

  h   2  
    

where   ‾   N  2    ,   
_

   F  2    , and   
_

  h   2    are the climatological means, and  ∆   N  2   ,  ∆   F  2   , 
and ∆h2 are changes. Therefore, while we find a large increase in    N  2   
, this results from a decrease in the MLD rather than an increase in 
the stochastic heat flux forcing    F  2   .

Statistical analysis
The statistical significance of A(1) is calculated with the two-tailed 
t test for Pearson correlation with the degree of freedom that equals 
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to the sample size minus two (30 − 2 years in the study). The statistical 
significance of the global ocean memory trends (P values in the text) 
is calculated with a Monte Carlo method, which takes into consid-
eration the relatively high autocorrelation of the global averaged 
A(1) time series. We calculated the trends in 5000 time series gener-
ated with the same level of autocorrelation as those of the global 
mean A(1) time series and obtained the significance level of the trends 
through ranking.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm3468
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